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ABSTRACT
Neural retrieval models (NRMs) have been shown to outperform
their statistical counterparts owing to their ability to capture se-
mantic meaning via dense document representations. These models,
however, suffer from poor interpretability as they do not rely on
explicit term matching. As a form of local per-query explanations,
we introduce the notion of equivalent queries that are generated by
maximizing the similarity between the NRM’s results and the result
set of a sparse retrieval system with the equivalent query. We then
compare this approach with existing methods such as RM3-based
query expansion and contrast differences in retrieval effectiveness
and in the terms generated by each approach.

CCS CONCEPTS
• Information systems→ Information retrieval;Content anal-
ysis and feature selection; Retrieval models and ranking.
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1 INTRODUCTION
Neural retrieval models (NRM) have gained prominence, achieving
state-of-the-art results on various document and passage ranking
tasks [7, 11, 17, 18, 32]. NRMs are capable of modeling the semantic
similarity between the query and document representations for
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ranking, leading to their outperforming over traditional sparse re-
trieval methods (e.g., BM25 [22], LM [33] etc.), which rely explicitly
on term matching. However, despite their success, NRMs suffer
from poor interpretability of their results [1]. With the increasing
deployment of more complex NRMs, it is essential to explain the
retrieval decisions of a “black-box” complex model to its end-users,
thereby increasing their trust in the model [19].

Given a query, while it is straightforward to understand why a
document is retrieved by a sparse retrieval model as the relevance
score depends on the explicit presence of the query (or expansion)
terms, the results produced by NRMs are hard to interpret as these
models rely on the closeness of query and document representations
in the embedding space. This inherent opaqueness of NRMs makes
them potentially non-trustworthy to end-users, especially in critical
domains such as healthcare, finance, and law [1, 34]. Approaches
to explaining NRMs include providing additional information such
as informative snippets [4] and key noun phrases representing
query aspects [20], visualizing regions in the embedding space that
affect the model output [5] and personalized explanations based
on user characteristics [27]. Furthermore, it has been found that
explanations generated by popular interpretabilty models such as
LIME [21] and SHAP [9, 14] vary widely raising concern about
the robustness and utility of the explanations produced by directly
applying these interpretability methods to NRMs [9].

Our Contributions: We propose an intuitive means of explaining
the output of an NRM by introducing the notion of an equivalent
query, which we define as follows. Given a query 𝑄 , the equivalent
query 𝑄+ is the query which when executed on a sparse retrieval
model ideally produces the same ranked list as produced by an NRM
with𝑄 , the original query. We posit that the equivalent query offers
a minimalist and intuitive explanation of the “thought process” of
an NRM. Since a sparse IR model relies on explicit term matching, a
query that produces the same (or close enough) results to that of a
complex NRM reveals the semantic concepts considered implicitly
by the NRM, and thus potentially helps to interpret its behavior.

As an illustrative example, consider the query what is the most
popular food in switzerland from the TREC-DL’19 topic set. The
equivalent queries produced by our proposed method for Mono-
T5 [18] (an NRM) is ‘dish food includ serv switzerland vacherin’
whereas for DCT [7] (another NRM) this equivalent query is ‘ap-
penzel food german meat neighbor popular’. The interesting point
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is that ‘appenzeler’ and ‘vacherin’ are two different varieties of
Swiss cheese; the two equivalent queries produced by our method
unravel the different concepts and terms used by these two models
for retrieving the respective top documents.

While the notion of an ‘equivalent query’ may seem somewhat
similar to adding terms to the original query via pseudo-relevance
feedback (PRF), there are two major differences. First, expansion
terms in PRF are simply the informative terms occurring in the top-
documents, whereas the process of generating equivalent queries
explicitly seeks to make the output of a sparse model locally similar
to that of a target NRM. Second, unlike PRF expansion, terms from
the original query may also be absent in the equivalent query.

Constructing the equivalent queries as explanations for a par-
ticular NRM is non-trivial as finding such an optimal query is an
optimal subset-selection problem, which is NP-complete (Section 2).
We adopt a discrete state-space exploration method to find solu-
tion states (expanded queries) which when executed on a sparse
index maximises the overlap of the top-documents retrieved with
the NRM for which explanations are sought. Our experiments on
the MS-MARCO [16] reveal that the generated equivalent queries,
on an average, achieve a fidelity score (RBO [30]) of up to 0.5194,
and these equivalent queries when executed on BM25 lead up to
obtaining 96% of the nDCG values of the target NRM.

2 PROPOSED METHODOLOGY
Problem Formulation. Let 𝜃 be a neural ranking model (NRM)

that, given a query𝑄 , retrieves an ordered set of documents𝐿𝑘 (𝑄 ;𝜃 ).
Each document 𝐷 ∈ 𝐿𝑘 (𝑄 ;𝜃 ) is sorted in the decreasing order of
the parameterized scores 𝜃 (𝑄, 𝐷) that measure the relevance of 𝐷
to 𝑄 . The dense model 𝜃 can either re-rank an initial list produced
by a sparse retriever (e.g. BM25) [11], or retrieve the list directly
from the underlying corpus in an end-to-end manner [32]. Recall
that our goal is to make use of a sparse retrieval model, which we
denote as𝜙 (e.g., BM25 [22] or LM [33]) to approximate the retrieval
output of an NRM 𝜃 . Note that this idea is analogous to the existing
work on developing local surrogate models to explain the behavior
of complex black-box models [3, 14, 21].

The sparse IR model, when fed with the equivalent query to
approximate the results of an NRM, offers a surrogate model for
explaining the behavior of the target NRM. This is because the
sparse model i) leverages discrete terms instead of embeddings,
and ii) the scoring function 𝜙 (𝑄, 𝐷) is a closed form expression of
several basic components, such as the term frequencies and IDFs
of the matching terms, the length of 𝐷 , etc. [25, 29].

There is one subtle difference of explaining document ranking
from the per-instance based local explanation models for classifiers
(e.g., LIME [21] or SHAP [14]) that explain the output by inducing
weights over input features reflecting their relative influence on
the predicted outcome. In the context of document ranking, similar
ideas have been explored to measure the impact of individual terms
on relative changes in the document scores [28].

In our setting, the key difference is that the locality for approxi-
mation to estimate term influence is not restricted to individual in-
stances of query-document pairs. Instead, the approximator works
at the level of a query and the top-𝑘 set of documents retrieved
with a deep neural model. Due to this difference in the granularity

of locality, the explanations generated do not correspond to the
influence weights of words from individual documents, but rather
they correspond to the words from the top-retrieved set. Specifi-
cally, we seek to find those terms which when added to the original
query 𝑄 will effectively bridge the vocabulary gap of the sparse
model 𝜙 and make its output similar to that of the NRM (𝜃 ) for 𝑄 .
Formally speaking, the equivalent query 𝑄+ is the one that satisfies
the following objective:

argmax
𝑄+⊂𝑉 (𝐿𝑘 (𝑄 ;𝜃 ) )

𝜔 (𝐿𝑘 (𝑄+;𝜙), 𝐿𝑘 (𝑄 ;𝜃 )), (1)

where 𝑉 (𝐿𝑘 (𝑄 ;𝜃 )) represents the vocabulary of the top-𝑘 docu-
ments retrieved with the query 𝑄 using the model 𝜃 , and 𝜔 is a
similarity measure, e.g., the set-based Jaccard metric or the rank-
based RBO metric [31] between the two ranked lists of documents
(see also [26] which explored this idea of overlap between document
lists retrieved with two different queries for measuring trustwor-
thiness of NRMs).

The output query, 𝑄+, thus obtained, can be interpreted as the
set of terms, or concepts, that the black-box NRM takes into account
in its computation of the top-𝑘 list. While in reality, 𝜃 works in the
embedded (continuous) space, a discrete realisation of this concept
set via this approximation helps gain insights into the behavior of
𝜃 , which would be useful to end-users and model practitioners.

Discrete State-Space Optimisation. Observe that Equation 1
is an optimal subset selection problem, which is NP-complete. A
practical approach is to employ a standard discrete state-space
exploration method, such as the Best First Search (BFS) explo-
ration [24] that involves traversing a state-space transition tree
by dynamically selecting a depth-first or breadth-first strategy via
a heuristic. We now describe the state-space, the actions and the
heuristics employed in the BFS exploration for our task.

States and Evaluation Function. In the context of our problem,
a state refers to a query 𝑄+ which is executed by the sparse model
𝜙 to retrieve a top-𝑘 list. The goal state for this approximation
problem is to find an optimal query 𝑄∗ which retrieves a top-𝑘 set
identical to the black-box model 𝜃 . Thus, the evaluation function
for a state, which measures how close a state is to the goal state, is
the overlap measure shown in Equation 1.

Actions. We consider two types of actions - one that involves
adding terms to an existing query of a state to generate a new query
state, and the other that involves removing a term to generate a new
state. An important decision to be made is to determine the set of
candidate terms to be added to an existing state to create a new state.
Although, in principle, one can consider the entire set of vocabu-
lary terms, such an approach would lead to a substantially large
branching factor for the tree-based exploration. A large volume
of work on pseudo-relevance feedback (PRF) in IR has shown that
most terms that are semantically related to the information need
mostly occur within the top-𝑘 set of documents retrieved [2, 15, 23].
Thus, it is reasonable to restrict the set of candidate terms to the
vocabulary of this set, denoted as 𝑉 (𝐿𝑘 (𝑄 ;𝜃 )) in Equation 1.

To define the first type of transition, i.e., the one that involves
adding a term 𝑡 to transition from 𝑄𝑖 to 𝑄𝑖+1 = 𝑄𝑖 ∪ {𝑡} (𝑖 being
the depth of the BFS exploration tree), is given by the normalized
probability of the RM3 [12] weights. In other words, the higher the
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RM3 weight of a term 𝑡 ∈ 𝑉 (𝐿𝑘 (𝑄𝑖+1;𝜃 )), the higher is the likeli-
hood of exploring along the branch 𝑄𝑖+1. Similarly, for generating
a new query (state) with one term removed from the current state,
we set the probability of removing a term as inversely proportional
to its tf-idf weight with the rationale of retaining the informative
terms within a query.

Exploration Heuristic. For the BFS exploration, we start ex-
ploring from the root state - the empty query ∅. Exploring a state
involves generating 𝑏 child states by choosing one of the two ac-
tions randomly: add or remove (𝑏 denotes the maximum branching
factor parameter). A child state is only added to the tree if it has
not been generated before. throughout the tree exploration phase,
we keep track of the child states, i.e., queries generated thus far.

Given a set of current unexplored nodes 𝑆 ∈ U, the next state
considered for exploration (action of adding or removing terms to
generate newer queries) is the state (say 𝑆∗ ∈ U) with the best value
of the evaluation function, i.e., argmax𝑆∈U 𝜔 (𝐿𝑘 (𝑆 ;𝜙), 𝐿𝑘 (𝑄 ;𝜃 )).
An advantage of the best-first exploration is that it is able to con-
tinue exploring along a promising direction at greater depths, or is
able to back-track to expand yet unexplored states at lower depths.
During the execution of the algorithm, we keep track of the best
state discovered and output it at the end of the exploration. The
exploration itself is limited by the maximum number of depths,
which we set to 10 in our experiments. The termination condition
for the algorithm is given by this maximum number of depths, or
when there is no state left to explore.

3 EXPERIMENT SETUP
Research Questions and Dataset. The objective of our experi-

ments is to see how effectively canwe approximate the top-retrieved
documents of an NRM 𝜃 by a sparse model 𝜙 , i.e.,
• RQ1: How well our proposed method of BFS-based tree explo-
ration approximates several black-box models (e.g., ColBERT
[11], ANCE [32] etc.) with different modes of operation (sparse
with reranking, or end-to-end dense with approximate search)?

Since the output of a model-aware local approximation is a set of
additional terms, which are supposed to be those on which the
target NRM puts emphasis, the next question to investigate is:
• RQ2: Can these additional terms, on top of help interpreting 𝜃 ,
can also help to improve the IR effectiveness of sparse models?

As the dataset for our experiments, we use the MS-MARCO passage
ranking collection [16] and the TREC DL 2019 topic set [6].

Baselines. Since we propose to use BFS to solve the discrete
state-space optimisation of optimal subset selection, we compare
it with other computationally less intensive approaches, such as
the greedy search. In the greedy exploration of the state-space, we
generate 𝑏 branches similar to the BFS method; however, we keep
on exploring only along the best branch every time without saving
the other branches for back-tracking purposes. Also, similar to the
BFS method, in our greedy baseline we restrict the exploration to a
maximum number of states and output the best state discovered
during the exploration as the optimal solution. This baseline uses
the same overlap-based state evaluation as used by BFS.

In addition to the model-aware greedy baseline, we also em-
ploy a model-agnostic baseline method, namely RM3-based query

expansion [12], to find out how much of an overlap can a model-
agnostic method such as RM3 on a sparse index achieve with the
top-retrieved set obtained by an NRM. Note that the output of this
method cannot be used as a model-specific explanation, and merely
serves as a reference point for the overlap comparison.

Parameter Details. To solve the optimisation of Equation 1,
for the greedy approach we set the maximum number of unique
states visited to 1000, whereas for BFS, we set the tree depth to 10.
The branching factor 𝑏 of the BFS exploration was set to 30. We set
the parameter 𝑘 of Equation 1, which controls the locality of the
explanations, to a value of 10 in all our experiments. A small value
of 𝑘 = 10 ensures that the objective is to approximate only the first
search result page of a black-box model [10].

Evaluation Metrics. As a measure of how closely the sparse
approximation fits a black-box model, i.e., as a fidelity measure,
we report the RBO and Jaccard based overlaps between the top-
10 documents retrieved with the original query by 𝜃 (the black-
box) and those retrieved with the expanded query by BM25 (𝜙 ,
the approximator). As IR evaluation measures, we report the MAP
(relevance of at least 2 as per the TREC DL guidelines [6]) and the
nDCG values for the top-10 results. A value of 𝑘 = 10 was used to
optimise the sparse approximation objective (see Equation 1).

Black-box and the Sparse Approximator Models. As the
sparse model for approximation we employ BM25, i.e., 𝜙 = {BM25}
with the standard settings of 𝑘BM25 = 1.2 and 𝑏BM25 = 0.75. As a
concrete realisation of the state evaluation function 𝜔 of Equation
1, we use RBO, which is a rank-based overlap metric [31]. In our
results, we report both Jaccard and RBO measures computed be-
tween the top-retrieved sets of 𝜃 and 𝜙 . As the black-box model 𝜃 ,
we employ a number of neural models operating in both the ‘sparse
+ reranking’ and the dense end-to-end modes [13]. Specifically, we
used ANCE [32], ColBERT (CBERT) [11], and MonoT5 [18] as rep-
resentative dense end-to-end models. Additionally, we employed
two sparse-reranking based models, a DeepCT [7] augmented in-
dex with ColBERT (DCT), and ColBERT followed by a BERT-based
query expansion (QE𝐵𝐸𝑅𝑇 ). Our implementation is available at
https://github.com/micllordes/eliBM25.

4 RESULTS
Main observations. Tables 1 and 2 present the results of our

experiments on approximating neural models with the sparse ap-
proximator - BM25; following are the interesting observations. First,
in relation to RQ1, we observe that our proposed BFS-based optimi-
sation consistently outperforms the baseline greedy approach by a
large margin in terms of both the fidelity and the approximation,
and also in terms of the quality of the search list retrieved with the
model-aware expanded query 𝑄+ on BM25 (Table 2).

Second, in relation to RQ2, we observe that the MAP and the
nDCG values obtained via approximation are close to the values
obtained with the black-box models themselves, e.g., compare the
MAP value of 0.2064 obtained with the sparse approximation to
that of 0.2182 obtained with CBERT (Table 1). Another important
observation in relation to RQ2 is that the BFS-based model-specific
approximation yields queries that are qualitatively better than the
ones generated by an unsupervised relevance feedback model, such

https://github.com/micllordes/eliBM25
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Table 1: Results of sparse approximation of NRMs in terms of IR
effectiveness. The best results across each method (Greedy and BFS)
are bold-faced and the ones across each column are under-lined. The
gray cells corresponding to the sparse retrieval rows (BM25 and RM3)
mean that these models, being sparse ones themselves, are not ap-
proximated by the baseline (greedy) or the proposed approach (BFS).
All nDCG values obtained with the BFS approach show statistically
significant differences compared to the baselines.

Retrieval quality with BM25(𝑄+)
Model Greedy (Baseline) BFS (Ours)

Type IR Model MAP nDCG MAP nDCG MAP nDCG

Sparse BM25 0.1067 0.4601
RM3 0.1411 0.4931

Rerank DCT 0.2192 0.7006 0.1544 0.5082 0.2050 0.6540
QE𝐵𝐸𝑅𝑇 0.2199 0.7015 0.1414 0.4848 0.2065 0.6760

E2E
ANCE 0.1836 0.6537 0.1454 0.5511 0.1723 0.6049
CBERT 0.2182 0.6934 0.1506 0.5057 0.2064 0.6474
MonoT5 0.2184 0.7300 0.1470 0.5355 0.1920 0.6623

Table 2: Evaluating sparse approximation of dense black-box mod-
els in terms of fidelity (overlap). The naming and bold-face/underline
conventions are the same as that of Table 1. All fidelity scores from
our BFS approach show statistically significant differences from
their corresponding BM25, RM3 and Greedy baselines.

Fidelity (Overlap) Measures

Model BM25(𝑄) RM3 Greedy (Baseline) BFS (Ours)

Type IR Model Jac RBO Jac RBO Jac RBO Jac RBO

Rerank DCT 0.1883 0.1173 0.1694 0.0956 0.3140 0.2207 0.5194 0.4946
(CBERT) QE𝐵𝐸𝑅𝑇 0.1621 0.1144 0.1420 0.0916 0.2956 0.2213 0.5111 0.5015

E2E
ANCE 0.1501 0.0952 0.1256 0.0753 0.3106 0.2239 0.4993 0.4969
CBERT 0.1641 0.1155 0.1442 0.0907 0.2974 0.2230 0.5046 0.4888
MonoT5 0.1835 0.1120 0.1715 0.0970 0.3041 0.2224 0.5327 0.5194

as RM3. This can be seen by comparing the MAP and the nDCG val-
ues of RM3 with the ones obtained by BFS approximation. Third, we
see that high fidelity scores correlate well with the downstream task
(retrieval) performance obtained via the approximation, which also
indicates that the enriched query acts as a meaningful explanation
of the model-specific influence of term weights.

Per-query statistics. Figure 1 shows that a majority of the
queries exhibit relatively high RBO values indicating that most of
the queries are good candidates for model-specific explanations
via our proposed discrete state-space optimisation. We believe that
queries with small fidelity scores are a result of the limitation of
the size of the vocabulary 𝑉 (𝐿𝑘 (𝑄 ;𝜃 )) as described in Section 2.

Example queries generated. As an additional analysis, we now
present in Table 3 some sample queries generated by the sparse
approximation method and compare those with the RM3-based
expanded ones. The first set of rows in Table 3 presents a situation,
where the sparse equivalent query 𝑄+ is a subset of the RM3 terms.
This particular example is notable as the BFS-generated equivalent
query correctly extracts terms related to the true information need
of the original query from the RLM expanded one, i.e., eliminating
terms related to the Commonwealth of British origin, and retaining
the ones related to the Commonwealth with that of Soviet origin.
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Figure 1: Fidelity (RBO overlap of top-10 documents) of the sparse
approximation of the best performing models among the reranking
ones - CBERT+BERTQE (left), and the best of the end-to-end ones
- MonoT5 (right) as per the middle and the bottom row groups of
Table 2. The queries in each plot are sorted by the RBO values.

Table 3: Sample equivalent queries 𝑄+ generated by optimising
Equation 1 (BFS-Gen). The BFS-Gen queries yield substantially bet-
ter retrieval effectiveness than the original queries, or the RM3-
expanded ones (RM3-Exp).

Query Example Queries Fidelity

Type (stemmed words) Jac RBO nDCG

Original Who formed the commonwealth of independent
states

0.1764 0.3480 0.3695

RM3-Exp british commonwealth countri form independ
nation republ soviet state union

0.2500 0.3565 0.3034

BFS-Gen commonwealth soviet union state form 0.5385 0.3934 0.6401

Original what is durable medical equipment consist of 0.4286 0.1350 0.5739
RM3-Exp benefit consist dme durabl equip ill item medic

patient therapeut
0.6670 0.2039 0.8533

BFS-Gen medic consist equip item patient 1.0000 0.2126 0.8807

The second group of rows in Table 3, shows an instance of BFS-
generated query which achieved a Jaccard score of 1, i.e., BM25
when executed with the equivalent query 𝑄+ yields the identical
top-10 documents as MonoT5 does with the original query. This
shows that the equivalent query, in this case, represents an effective
explanation of the term semantics with which MonoT5 operates
for the original query.

Concluding Remarks. We considered the task of explaining
the results of an NRM and introduced the notion of an equiva-
lent query – one that when executed on a sparse retrieval model
can lead to similar results as a complex NRM. We formulated the
problem as an optimal subset selection problem (NP complete) and
proposed a BFS-based state-space exploration method to approx-
imate equivalent queries. Our empirical results on MS-MARCO
benchmark show that the equivalent queries produced by our solu-
tion can approximate the top-𝑘 results of NRMs such as ColBERT
and ANCE (Section 4), and the resulting queries unravel how the
NRMs interpreted the user queries. Further, the equivalent queries
when executed on a BM25 ranker achieved retrieval performance
close to the complex NRMs.

Our proposed framework of equivalent queries offers a simple
and intuitive interpretation of complex black-box retrieval models.
One limitation of our solution is a somewhat high latency due to
the exploration of the state space (average latency of ≈ 6 seconds).
Our future work will focus on exploring different subset selection
methods to reduce the number of retrieval operations on a sparse
index required for the evaluation of the states, or even the use of
model-agnostic query variants [2, 8].
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